- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Jonoska, Nataša (2)
-
Mao, Chengde (2)
-
Ohayon, Yoel P (2)
-
Perren, Lara (2)
-
Rueb, Joe (2)
-
Sha, Ruojie (2)
-
Vecchioni, Simon (2)
-
Woloszyn, Karol (2)
-
Canary, James W (1)
-
Erkalo, Betel (1)
-
Horvath, Andrew (1)
-
Jaffe, Mara (1)
-
Janowski, Jordan (1)
-
Lu, Brandon (1)
-
Madnick, Jesse (1)
-
Pham, Van_A B (1)
-
Rizk, Joanna A (1)
-
Saito, Masahico (1)
-
Wang, Mindy (1)
-
Zou, Yijia (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, we investigate the topological adaptability and structural resilience of periodic soft matter entanglements using the DNA tensegrity triangle, a foundational motif in structural DNA nanotechnology, as a model system. By simulating the Reidemeister moves from knot theory, which describe a series of “moves” by which the knot equivalence is preserved, we demonstrate that many variants of the tensegrity triangle maintain their lattice geometry, underscoring the motif’s inherent topological robustness. Using granular deformations in a series of closely related motifs, we systematically twist the helices and slide their ends relative to junction crossings to yield 48 distinct crystal structures. Notably, we Identify a novel poke-DX feature (PDX), which introduces rigid crossover configurations with enhanced crystallographic resolution and site-specific metal ion coordination. Further exploration reveals the formation of semi-junctions – a new class of four-arm junctions held together by a single rotatable bond, which feature relaxed torsional strain and altered crossover geometries. These configurations support lattice transformations into tetragonal and distorted rhombohedral forms as well as facilitate topological inversion between left- and right- handed triangles. Altogether, these findings illustrate how controlled topological operations at the molecular level can tune local flexibility and stiffness at key sites to affect long-range lattice geometry. This work positions DNA-based frameworks as a programmable platform for the design of architected materials, topological metamaterials, and nanoscale devices with tunable structural and functional properties.more » « lessFree, publicly-accessible full text available June 5, 2026
-
Janowski, Jordan; Pham, Van_A B; Vecchioni, Simon; Woloszyn, Karol; Lu, Brandon; Zou, Yijia; Erkalo, Betel; Perren, Lara; Rueb, Joe; Madnick, Jesse; et al (, Proceedings of the National Academy of Sciences)Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.more » « less
An official website of the United States government
